Information Tracking and Sharing in Organic Photovoltaic Panel Manufacturing

نویسنده

  • Ming Gong
چکیده

The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative improvement projects at Konarka's manufacturing facility were focused on information system and operations in the finishing processes after solar panels have been coated. This thesis report, however, focuses primarily on information tracking and sharing in Konarka's manufacturing facility, specifically including the barcode tracking system for production tracking, operator interfaces for the system, production tracking (Kanban card) board, and Kaizen continuous improvement board. A barcode tracking system for solar panel and associated user interfaces portion was developed to increase process and inventory accountability. However, because of the intricate SQL database, it may still be difficult for any operator to access this information in the recent future. Hence, physical representative information boards were developed to alleviate this communication complexity. One Kanban (card style) board was implemented to keep track of production information, and another Kaizen (continuous improvement) board was established to keep track of all the continuous activities on the shop floor. Based on various reviews and discussions, these improvement projects served as useful tools for the company's production ramp-up development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intelligent PV Panel Structure to Extract the Maximum Power in Mismatch Irradiance

a new intelligent photovoltaic (PV) panel structure to extract the maximum power in mismatch irradiance is proposed. In conventional structures, difference of irradiance between series panels can cause the deviation of maximum power point. In this condition tracking MPP becomes difficult and reduces efficiency. Improvements in power electronics and its effects in PV industrial technology, devel...

متن کامل

A New Implementation of Maximum Power Point Tracking Based on Fuzzy Logic Algorithm for Solar Photovoltaic System

In this paper, we present a modeling and implementation of new control schemes for an isolated photovoltaic (PV) using a fuzzy logic controller (FLC). The PV system is connected to a load through a DC-DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC-DC converter for the PV system to generate maximum power. Using FLC controller block in MATLABTM/Simulink e...

متن کامل

Analysis and Experimentation of Soft Switched Interleaved Boost Converter for Photovoltaic Applications

Conventional energy sources are fast depleting due to poor conservation practises and excessive usage while the world’s energy demands are growing by minute. Additionally, the cost of producing conventional energy is rising also leading to an increase in harmful environmental pollution. Hence, there is a need to look at alternative energy sources such as sun, water and wind. Photovoltaic (PV) i...

متن کامل

Evaluating Technical Requirements to Achieve Maximum Power Point in Photovoltaic Powered Z-Source Inverter

One of the key challenges of employing photovoltaic systems is to extract maximum power of the panels. This problem is known as maximum power point tracking (MPPT) technique. The MPPT stands for establishing situation in which output power of the panels reaches its maximum allowable power. In this context, this paper is to assess the technical requirements to achieve maximum output power of a n...

متن کامل

Increasing the Efficiency of Photovoltaic Systems by Using Maximum Power Point Tracking (MPPT)

Using Photovoltaic systems is gradually expanded by increasing energy demand. Abundance and availability of this energy, has turned to one of the most important sources of renewable energy. Unfortunately, photovoltaic systems have two big problems: first, those have very low energy conversion efficiency (in act between 12 and 42 percent under certain circumstances). Second, the power produced b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012